Deep learning / Ian Goodfellow, Yoshua Bengio and Aaron Courville.
Material type: TextSeries: Adaptive computation and machine learningPublication details: Massachusetts : The MIT Press, 2017.Edition: First editionDescription: xiv, 785 pages : illustrations ; 24 cmISBN:- 9780262035613 (hardcover : alk. paper)
- 0262035618 (hardcover : alk. paper)
- 006.3/1 G651d 2017 23
- Q325.5 .G66 2016
Item type | Current library | Call number | Copy number | Status | Date due | Barcode | |
---|---|---|---|---|---|---|---|
Books | Premier University Faculty of Engineering Library | 006.3/1 G651d 2017 | 1 | Available | 28602 | ||
Books | Premier University Faculty of Engineering Library | 006.3/1 G651d 2017 | 2 | Available | 28603 | ||
Books | Premier University Faculty of Engineering Library | 006.3/1 G651d 2017 | 3 | Available | 28604 | ||
Books | Premier University Faculty of Engineering Library | 006.3/1 G651d 2017 | 4 | Available | 28605 | ||
Books | Premier University Faculty of Engineering Library | 006.3/1 G651d 2017 | 5 | Available | 28606 |
Includes bibliographical references (pages 711-766) and index.
Applied math and machine learning basics. Linear algebra -- Probability and information theory -- Numerical computation -- Machine learning basics -- Deep networks: modern practices. Deep feedforward networks -- Regularization for deep learning -- Optimization for training deep models -- Convolutional networks -- Sequence modeling: recurrent and recursive nets -- Practical methodology -- Applications -- Deep learning research. Linear factor models -- Autoencoders -- Representation learning -- Structured probabilistic models for deep learning -- Monte Carlo methods -- Confronting the partition function -- Approximate inference -- Deep generative models.
Computer Science & Engineering
There are no comments on this title.