000 03394cam a2200493 i 4500
001 23792096
003 BD-ChPU
005 20250630101131.0
008 240720t20232023cc ab001 0 eng d
010 _a2023549175
015 _aGBC2G2773
_2bnb
016 7 _a020744694
_2Uk
020 _a9781098125974
_q(paperback)
020 _a1098125975
_q(paperback)
035 _a(OCoLC)on1346503549
040 _aUKMGB
_beng
_erda
_cUKMGB
_dYDX
_dOCLCF
_dTOH
_dVNVGU
_dVP@
_dOCLCO
_dKMS
_dORZ
_dCDX
_dOCLCQ
_dDLC
_dBD-ChPU
042 _alccopycat
050 0 0 _aQA76.73.P98
_bG45 2023
082 0 4 _223
_a006.3/1 G377h 2023
100 1 _aGéron, Aurélien.
_eauthor.
245 1 0 _aHands-on machine learning with Scikit-Learn, Keras and TensorFlow :
_bconcepts, tools, and techniques to build intelligent systems /
_cAurélien Géron.
250 _aThird edition.
260 _aBeijing :
_bO'Reilly,
_c2023.
300 _axxv, 834 pages :
_billustrations (chiefly color) ;
_c24 cm.
500 _aPrevious editions: 2019, 2017.
504 _aIncludes bibliographical references and index.
505 0 _aThe fundamentals of machine learning. The machine learning landscape ; End-to-end machine learning project ; Classification ; Training models ; Support vector machines ; Decision trees ; Ensemble learning and random forests ; Dimensionality reduction ; Unsupervised learning techniques -- Neural networks and deep learning. Introduction to artificial neural networks with Keras ; Training deep neural networks ; Custom models and training with TensorFlow ; Loading and preprocessing data with TensorFlow ; Deep computer vision using convolutional neural networks ; Processing sequences using RNNs and CNNs ; Natural language processing with RNNs and attention ; Autoencoders, GANs, and diffusion models ; Reinforcement learning ; Training and deploying TensorFlow models at scale.
520 _a"Through a recent series of breakthroughs, deep learning has boosted the entire field of machine learning. Now, even programmers who know close to nothing about this technology can use simple, efficient tools to implement programs capable of learning from data. This best-selling book uses concrete examples, minimal theory, and production-ready Python frameworks--scikit-learn, Keras, and TensorFlow--to help you gain an intuitive understanding of the concepts and tools for building intelligent systems. With this updated third edition, author Aurelien Geron explores a range of techniques, starting with simple linear regression and progressing to deep neural networks. Numerous code examples and exercises throughout the book help you apply what you've learned. Programming experience is all you need to get started"--
526 _aComputer Science & Engineering
630 0 0 _aTensorFlow.
650 0 _aPython (Computer program language)
650 0 _aMachine learning.
_93635
650 0 _aArtificial intelligence.
_95339
650 6 _aApprentissage automatique.
650 6 _aPython (Langage de programmation)
650 6 _aIntelligence artificielle.
650 7 _aartificial intelligence.
_2aat
_95339
650 7 _aArtificial intelligence
_2fast
_95339
650 7 _aMachine learning
_2fast
_93635
650 7 _aPython (Computer program language)
_2fast
906 _a7
_bcbc
_ccopycat
_d2
_encip
_f20
_gy-gencatlg
942 _2ddc
_cBK
999 _c7878
_d7878